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Abstract
A lattice Boltzmann (LB) model of an interface between a nematic and an
isotropic fluid is presented. The method is used to study, in two dimensions,
the properties of a deformable colloidal droplet of an isotropic fluid suspended
in a nematic matrix. The isotropic fluid is modelled by a standard lattice
Bhatnagar–Gross–Krook (LBGK) scheme. The LB model of the nematic is a
modified LBGK scheme in which a tensor density is used to recover the variable
order parameter nemato-dynamics scheme proposed by Qian and Sheng. The
interface between the two fluids is modelled by introducing appropriate forcing
at the interface. The stress balance is achieved using an extension of a
method proposed by Lishchuk et al, and the torque balance is achieved with an
appropriate surface molecular field. The resulting interface algorithm recovers
the macroscopic equations developed by Rey. Results are presented for the
dependence of the shape of the droplet and the nematic defects upon the surface
tension and the anchoring strength. A discussion is also presented of the effect
of curvature rigidity on the droplet shape.

1. Introduction

The motivation for the work presented in this paper is the development of a technique to study
both the statics and dynamics of liquid crystal colloidal systems in which the colloidal particle
is an isotropic fluid with a sufficiently low surface tension for deformation to be possible. It
is well established that colloidal particles in a nematic matrix may introduce defects into the
elastic field which lead to new interactions between colloidal particles [1]. However, the defects
are difficult to describe within macroscopic theories of liquid crystals since they introduce local
modifications to both the density and the order tensor (i.e. the order parameter is reduced and
biaxiality is observed). The precise description of the structure and energy associated with a
nematic defect is a complex problem which must be considered at a range of length scales.
For this reason the study of these materials requires contributions from theories (e.g. [2–4])
and simulations (e.g. [5–7]) at the molecular, mesoscopic and continuum levels. The approach
adopted in this work has the merit that it is potentially able to recover the dynamics associated
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with these systems. It should be noted, however, that in this work the fluids are assumed to be
incompressible.

The forces between the colloidal particles in a nematic, and the dynamics of their motion,
are accessible to experiment (cf [8]). The interactions may lead to self-assembly into a range
of new structures (e.g. [9–11]). There is also interest in the flow properties associated with
colloidal particles embedded in a liquid crystal host [1], and the responses of the systems to
external fields have also been explored [12]. Colloidal suspensions of water droplets in nematic
liquid crystals have been studied experimentally [8, 13].

However, if the particle is a liquid droplet of the order of, or below, a critical size, the
particle shape can distort in the nematic field and this represents a particular challenge for
simulation. The critical radius is determined by the ratio of the elastic constant to the surface
tension [2] and for a typical liquid crystal–surfactant–water system this is found to be of the
order of 1 nm. However, if the surface tension between the nematic and isotropic phase
could be significantly reduced, there arises the possibility of significant distortions at larger
droplet sizes. For the inverse problem of liquid crystal droplets embedded in an isotropic
matrix, distortions of the droplets to ‘tactoid’ and lens shapes are observed for droplets of the
order of 1 µm. These latter systems have been extensively studied both experimentally and
theoretically (e.g. [14–16]). However, when the nematic is the external medium, the analysis
becomes complicated by the possibility of defects forming close to the surface of the droplet.
In this paper, the parameters are chosen to explore the region in which the deformation of the
droplets becomes important.

Director anchoring at the surface of a colloidal particle gives rise to complex defect
structures. The precise behaviour of an isotropic droplet in a nematic matrix depends upon
(i) the boundary conditions at the particle and the container, (ii) the elastic constants of the
nematic, (iii) the anchoring energy of the nematic at the liquid interface, (iv) the size and shape
of the particle, and (v), in the case of a liquid droplet, the strength of the surface tension.
The balance of these properties is strongly temperature dependent and may lead to interesting
phase behaviour. Poulin [17] reports that the defect structure around a droplet changes from a
quadrupolar to a dipolar configuration as the temperature is reduced.

The behaviour of an isotropic droplet in a nematic matrix is controlled by the dimensionless
parameters

W̃ = W R

K
K̃ = K

σ R
ω̃ = W

σ
(1)

where W is the surface anchoring strength, σ is the surface tension, K is a Frank elastic
constant and R is the drop radius. We note that there are in fact only two independent
dimensionless parameters, since ω̃ = W̃ K̃ . If K̃ � 1, the surface tension dominates the
elastic free energy. Consequently, the droplet will remain essentially spherical and the defect
structure is controlled by the dimensionless anchoring strength, W̃ . However, if K̃ � 1,
the nematic elastic energy becomes comparable, or dominates, the surface tension and the
possibility of drop distortion arises. However, the distortion will only be significant for values
of ω̃ ∼ 1 where the anchoring strength is of the same order, or larger, than the surface tension.
The problem becomes further complicated if we consider the curvature rigidity which may
be associated with a surfactant layer on the surface of the isotropic droplet. Consideration of
this effect introduces a further dimensionless parameter, κ̃ = κ/(σ R2), which is a measure of
the relative strength of the curvature rigidity to the surface tension. For systems which would
otherwise exhibit a lens shape, the effect of the curvature rigidity would be to remove the sharp
discontinuity in curvature.

The lattice Boltzmann (LB) method is used as the basis of the methods described to
recover the results presented in section 4. The LB method has been extensively studied as a
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method of simulating isotropic fluid flow (e.g. [18]). A particular strength of LB lies in its
ability to model the interface between two fluids (e.g. [19–21]). In addition, a number of LB
schemes have recently been developed to represent the flow of anisotropic fluids such as liquid
crystals [22–24]. The goal of the work in this paper is to combine these two approaches in
order to model a nematic–isotropic interface.

The paper is organized as follows. In section 2 the LB algorithm that recovers the equations
for the bulk fluids is described. In section 3 the LB scheme to recover the isotropic nematic
interface is described. It is used in section 4 to study a static droplet of isotropic liquid,
immersed into nematic phase. The director field and the droplet shape are obtained for a range
of values of the surface tension and surface anchoring parameters. In section 5 the effect of
introducing a curvature rigidity are analysed. The conclusions of the paper are discussed in
section 6. The appendix contains a summary of the derivation of macroscopic equations for
the nematic–isotropic interface based on the arguments of Rey [25].

2. Lattice Boltzmann scheme for the bulk fluids

The results reported in this paper use an LB scheme on a two-dimensional triangular lattice
with a coordination number of 13 (D2Q13) [26]. The lattice is populated by an isotropic
density, fi , and a nematic density, giαβ , which give the corresponding macroscopic densities,
ρI and ρN. The bulk isotropic fluid is modelled with a standard, single relaxation parameter
LBGK scheme [26].

In the nematic phase, the orientational ordering is characterized by a director field,nα(x, t),
a unit vector which essentially defines the ‘average orientation’ of the molecules. However,
the nematic ordering is more fully characterized by a traceless and symmetric order tensor,
Qαβ . For simplicity, in this work we assume that the director is confined to a two-dimensional
plane, and hence that Qαβ may be written in the form

Qαβ(x, t) = S(2nαnβ − δαβ). (2)

The principal eigenvector of Qαβ is the director, and the principal eigenvalue, S(x, t), is the
scalar order parameter. The ability to model a system with tensor order parameter is essential
in order to recover the defect structure which is known for some droplet sizes.

The nematic phase is modelled using the scheme described in Care et al [24] which
recovers the Qian–Sheng [27] equations for the flow of a nematic liquid crystal with a tensor
order parameter. The scheme is based on a single LB equation which governs the evolution of
the tensor density, gi,αβ , and from which both the macroscopic order and momentum evolution
equations are recovered. The equilibrium distribution function is retained as isotropic, and
the anisotropy is introduced through (i) anisotropic scattering and (ii) angular and momentum
forcing based on a molecular field which is derived from a Landau–deGennes free energy. The
full details of the method are quite involved and will not be reported here for reasons of space;
the interested reader is referred to [24].

We simply summarize here the target macroscopic equations for this LB method. The two
governing equations of the Qian scheme are the momentum evolution equation

ρDt uβ = ∂β(−PNδαβ + σ d
αβ + σ f

αβ + σ v
αβ) (3)

and the order tensor evolution equation

J Q̈αβ = he
αβ + hv

αβ − λNδαβ − εαβγ λ
N
γ (4)

where he
αβ (hv

αβ) is the elastic (viscous) molecular field. The quantitiesλN and λN
α are Lagrange

multipliers which impose the constraints that the order tensor, Qαβ , is symmetric and traceless
in the bulk nematic.
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It is shown by Qian [27] that in the limit of constant order parameter, the solutions
of these equations is identical to those obtained from the standard Ericksen–Leslie–Parodi
equations [28]. We use the repeated index notation for summations over Cartesian indices. In
the above equations, Dt = ∂t + uµ∂µ is the convective derivative, and PN is the pressure in the
nematic phase. σ v

αβ is the viscous stress tensor

σ v
αβ = β1 QαβQµν Aµν + β4 Aαβ + β5 QαµAµβ + β6 QβµAµα

+ 1
2µ2 Nαβ − µ1 QαµNµβ + µ1 QβµNµα (5)

where Aαβ = 1
2 (∂αuβ + ∂βuα) is the symmetric velocity gradient tensor, and Nαβ is the co-

rotational derivative defined by Nαβ = ∂t Qαβ + uµ∂µQαβ − εαµνωµQνβ − εβµνωµQνα with
ωµ being the fluid vorticity. In equation (5), σ d

αβ is the distortion stress tensor

σ d
αβ = − ∂ f N

∂(Qµν,α)
Qµν,β (6)

where Qαβ,γ ≡ ∂γ (Qαβ) and σ f
αβ is the stress tensor associated with an externally applied

field. The bulk elastic molecular field is given by

he
αβ = − ∂ f N

∂Qαβ

+ ∂µ
∂ f N

∂(Qαβ,µ)
(7)

where we assume the free energy density of the bulk nematic, f N, is given by a Landau–
deGennes expression of the form

f N = f Nh + f Ng (8)

where the homogeneous contribution, f Nh, is given by

f Nh = 1
2 (αF Q2

µν − βF QµνQντ Qτµ + γF(Q
2
µν)

2) (9)

and the gradient contribution, f Ng, is given by

f Ng = 1
2 (L1 Q2

µν,τ + L2 Qµν,νQµτ,τ ). (10)

Using this form of the free energy the bulk molecular field, equation (7), is given by

he
αβ = L1∂

2
µQαβ + L2∂β∂µQαµ − αF Qαβ + 3βF QαµQβµ − 4γF QαβQ2

µν. (11)

3. Lattice Boltzmann algorithm for a nematic–isotropic interface

There have been a number of theoretical studies of the interface between an isotropic and a
nematic fluid [15, 25, 29, 30]. At such an interface it is necessary to satisfy a torque balance
equation and a momentum balance equation. The bulk LB technique described in [24] may be
developed to recover the macroscopic equations proposed by Rey [25, 29] for such an interface.
However, the surface free energy (which gives the surface molecular field and a surface stress
tensor) depends upon an impracticably large number of parameters. These include anchoring
coefficients which control the nature of the static interface and a large number of surface
viscosity coefficients. Only a limited number of these parameters are included in this work.

In a recent article, [31], the authors reported a method of obtaining a surface tension at the
interface between two isotropic fluids by introducing a forcing term on the mixed (surface) sites
which is dependent on the surface curvature; the segregation of the two fluids is maintained by
the technique of Gunstensen [19]. The method [31] significantly reduces the micro-currents
which are an artefact observed in most LB interface schemes.

It is possible to combine the scheme for the bulk nematic phase described above with
the interface scheme [31] to recover a nematic–isotropic interface based on the continuum
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description proposed by Rey [25, 29]. The key additional feature to recover the nematic–
isotropic interface is the introduction of a surface molecular field and a surface stress tensor. A
surface unit normal, kα , is constructed from the gradient of the nematic density at mixed sites,
φα = ∂α(ρ

N/ρ). The surface normal is used to calculate an elastic surface molecular field

hS
αβ = −Wkαkβ − L1kµ∂µQαβ − L2kα∂µQµβ (12)

and an elastic surface stress tensor

σ S
αβ = σ(δαβ − kαkβ) + W [δαβQµνkµkν + Qµνkµkνkαkβ − 2Qαµkµkβ] (13)

where σ controls the strength of the surface tension, W controls the anchoring strength, and
{L1, L2} control the elastic constants of the nematic. The results (12) and (13) follow from
a surface free energy density equivalent to that proposed by Rapini [32]. A summary of the
origin of equations (12) and (13) is given in the appendix. The viscous contributions to the
surface molecular field and surface stress tensor are not included since we are only interested
in this work in the steady state solutions.

In order to generate an isotropic–nematic interface, the forcing introduced in [31] is
adapted to give a forcing for the nematic surface densities of the form

φN
iαβ = ρN

ρ
Sαβφ

S
i (14)

and, for the isotropic surface densities,

φI
i = ρI

ρ
φS

i (15)

where

φS
i = 1

c2
s

ti ciµ|φ|∂S
ν σ

S
νµ (16)

with the surface gradient defined by

∂S
α = (δαβ − kαkβ)∂β. (17)

The angular forcing in the LB algorithm is modified on the surface sites to include a
contribution from the surface molecular field

χiαβ = tiρ
N

{
(εανµQβµ+εβνµQαµ)ων− 1

2µ1
[µ2 Aαβ−2(hαβ + |φ|hS

αβ) + 2δαβλ + 2εαβµλµ]

}
.

(18)

The segregation of the two fluids is achieved using the method of Gunstensen [19], but it is
important to note that the surface tension inducing perturbation used by Gunstensen is replaced
by the forcing described in the previous paragraph.

4. Results

In this section we report results obtained by applying the technique presented in sections 2
and 3 to explore the behaviour of a droplet of an isotropic fluid embedded in a nematic liquid
crystal. The results are for steady state solutions; the effect of introducing flow fields will be
explored in a future publication.

The effect of modifying the surface tension, σ , and the anchoring strength, W , is illustrated
in figure 1 for a system with homeotropic alignment on the surface of the drop. The picture is a
collage of six separate simulations in which the free energy parameters controlling the elastic
constants are fixed at the values L1 = 10−4 and L2 = 0. Each simulation was run to steady
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Figure 1. Steady state droplets for various values of the anchoring strength, W , and surface
tension, σ .

state on a 200 ×200 grid with the droplet being initialized as a disc with a diameter of 48 sites.
Periodic boundary conditions were imposed in which the director was aligned perpendicular
to the top and bottom surfaces. The grey scale is used to represent the direction of the director,
with white (black) corresponding to the director aligned vertically (horizontally).

It can be seen that the droplet becomes more circular with increasing surface tension, σ ,
as would be expected. From the arguments used for solid colloidal particles [1] it is expected
that the position of the defects will be controlled by the dimensionless quantity W̃ = W R/K ,
where R is an average drop radius. In the results presented here, the nematic elastic constant
and drop size are fixed and hence the parameter W̃ is controlled simply by W . If we consider
the set of drops with σ = 0.8, it can be seen that for small values of W there are no defects,
and the nematic field distorts to become tangentially oriented at the equator of the sphere.
As W increases, two defects become detached from the droplet, forming a structure which is
equivalent to the Saturn ring observed around three-dimensional colloidal spheres.

Figure 2 shows a sequence of simulations with the surface tension, σ , fixed at 0.9 and with
varying surface anchoring parameter, W . It can be seen that the position of the defect jumps
from the surface at a value for W which lies between 0.09 and 0.1.

Figure 3 shows the effect of changing the surface tension with the anchoring strength fixed
at W = 0.05. As σ is reduced the droplet becomes distorted from its circular shape. Since
the director field is not strongly distorted throughout this range, the system is equivalent to the
inverse case of a nematic droplet, with a homogeneous director field, embedded in an isotropic
matrix. Prinsen et al [16] predicted that the aspect ratio for this system should behave as
1 + W/σ and the results can be seen to be in good agreement with this prediction (solid curve).

In figure 4 the surface tension is changed while keeping W/σ = 0.1, and it can be seen
that the data are in agreement with the predictions of [16] that the aspect ratio should behave
as 1 + W/σ for a uniform director field.

For larger values of W and smaller values of σ (e.g. σ = 0.4,W = 0.2) the drop initially
distorts to a well defined elongated shape equivalent to a lens in three dimensions, shown
schematically in figure 5(a). Increasing the surface tension on this distorted shape produces
a jump to a defect structure as illustrated schematically in figure 5(b). However, at very long
times these highly deformed structures become unphysically distorted and this is associated
with increased microcurrent activity. It is thought that the problem arises because of the
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Figure 2. Droplet aspect ratio (top data) and defect position (lower data) as a function of anchoring
coefficient, W , for σ = 0.9.
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Figure 3. Droplet aspect ratio as a function of surface tension, σ , for W = 0.05.

numerical problem of calculating the surface gradient close to the apex of the lens structure.
Results are therefore unreliable in this region, although the results do suggest that highly
elongated structures may be observed for these values of the anchoring strength and surface
tension.

5. The effect of curvature rigidity

In the previous section it was found that the LB algorithm experienced numerical difficulties at
the points where there were large curvatures. It is therefore of interest to determine the length
scales over which the curvature changes rapidly, and this will be controlled by the curvature
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Figure 4. Droplet aspect ratio as a function of surface tension, σ , with W/σ = 0.1.

(a) (b) 

Figure 5. A schematic illustration of the nematic field around a droplet (a) before and (b) after the
formation of defects.

rigidity of the surface. In this section we therefore present a preliminary analysis of the effect of
curvature rigidity on the nematic–isotropic interface by direct consideration of the free energy
of the droplet.

If we consider a lens shaped droplet in three dimensions and assume that the radius of
curvature at the edge of the lens is δ, the energy associated with the apex of the lens will
be proportional to κR/δ, where R is the radius of the lens and κ is the curvature rigidity
associated with the surface. It can be seen that this term will become the dominant free energy
contribution as the radius curvature at the edge of the lens, δ, becomes sufficiently small. It
should be noted, however, that for a tactoid shape [16], the contribution of the curvature energy
does not diverge because the singularity in the curvature is confined to two points.

In order to understand the effect of curvature rigidity, we consider the problem of an
isotropic droplet placed in a nematic with the director aligned uniformly in the z direction, as
shown in figure 6.

We therefore ignore the free energy contribution from distortion in the director field
around the droplets which would be expected to be observed experimentally. This problem
is essentially equivalent to that considered by Prinsen et al [16] of a nematic droplet with a
uniform director field embedded in an isotropic fluid.

There are number of possible coordinate systems which can be used to describe the surface
of the droplet, each of which leads to an alternative form of the Euler-Lagrange equations
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Figure 6. The uniform director field around a droplet.

Figure 7. The coordinate definition for a droplet surface.

and the boundary conditions which must be satisfied by the variables. We use here the
representation which is shown in figure 7. In terms of this coordinate system the free energy
of the droplet is given by

L = 2π
∫ π

0
dψ x ′(ψ)x(ψ)[W cosψ + K (C2

1 + C2
2 )

2 secψ + 2σ secψ − λx(ψ) tanψ] (19)

where W is the anchoring energy, K is a the curvature energy, σ is the surface tension, and
λ is a Lagrange multiplier to enforce the constraint that the volume of the droplet is constant.
Given this form of the free energy it is straightforward to derive the associated Euler-Lagrange
equation

sinψ(1 − ω cos2 ψ)− λx(ψ) = κ

[
−2

cos2 ψ sinψ

x(ψ)2
− sin3 ψ

x(ψ)2
− cos2 ψ sinψ

x ′(ψ)2

+ 2
cos3 ψ

x(ψ)x ′(ψ)
− 2

x ′′(ψ) cos3 ψ

x ′(ψ)3

]
. (20)

This is a second order ordinary differential equation with the two boundary conditions
{x(0) = 0; x(π) = 0} which are required to achieve a closed surface with the required
symmetry.

If we set κ to zero in (20), we recover an algebraic equation for x(ψ)which is equivalent to
that derived by Prinsen et al [16]. However, obtaining solutions to the Euler-Lagrange equation
for small, but non-zero, values of κ presents considerable difficulties, even numerically. Thus,
the presence of a small parameter pre-multiplying the highest derivative, x ′′(ψ), leads to a
form of singular perturbation problem (e.g. [33]) which prevents straightforward perturbation
expansions in terms of the parameter κ . The alternative coordinate systems which were
explored did not overcome this difficulty. The problem of obtaining a numerical solution
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Figure 8. Cross sections of three-dimensional droplets which minimize the free energy given by
equation (19).

of (20) is compounded by singularities at the boundaries which essentially arise when the
equation is inverted to obtain a numerical expression for x ′′(ψ).

In order to make progress, the free energy was minimized directly for a three-dimensional
system, without recourse to the Euler-Lagrange equation. A Fourier expansion of x(ψ) was
constructed with the coefficients scaled to enforce a constant drop volume. Figure 8 shows
the droplet shapes obtained for a range of values of the dimensionless parameter ω̃ defined in
equation (1) and the dimensionless curvature rigidity, κ̃ = κ/(σ R2), where R is the undistorted
droplet radius. The elements of the array in the figure which do not include a diagram
correspond to values of the parameters for which the numerical solver failed to converge.
The bottom row, with κ̃ = 0, corresponds to the results predicted by Prinsen [16], with a lens
shape forming for ω̃ > 0.5.

It can be seen that as the curvature rigidity increases, the drop shape becomes less
curved at the perimeter of the lens, as would be expected. Indeed if we assume a value
of σ = 10−2 N m−1, which is typical of a water–surfactant–oil interface, and a value of
κ = 10−21 J typical of a microemulsion [34], the droplets in the figure with κ̃ = 0.1
corresponds to droplets with R = 1 nm. This is also the droplet size for these systems at
which distortion of the droplet is expected to be observed. The effects of the curvature rigidity
would be observable for larger droplets if the surface tension were reduced or the rigidity
increased. Thus if experimental systems can be identified for which σ = 10−6 N m−1, the line
κ = 0.1 corresponds to droplets of 1 µm. These arguments suggest that the LB method must
be extended to include the effect of surface rigidity if it is correctly to describe the distortion
of isotropic droplets in a nematic matrix.

6. Discussion and conclusions

An LB method for simulating a nematic–isotropic interface has been reported, and the method
is constructed to recover the macroscopic scheme proposed by Rey [25]. The technique has
been used to study the steady state behaviour of a single isotropic droplet embedded in a nematic
matrix. For large values of the surface tension, the droplets exhibit only small distortion, and
defects are observed to form at some critical value of the anchoring strength. The appearance
of the defects is associated with increased isotropy of the droplet.
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As the surface tension is reduced, the droplet becomes more distorted. For low values of
the anchoring strength the results are in good agreement with the predictions for the inverse
problems discussed by Prinsen [16]. With increasing anchoring strength at low surface tension
values the curvature of the droplets becomes larger. However, these more extreme shapes lead
to numerical instabilities arising from the difficulties in calculating surface gradients. The
effect of curvature rigidity on the droplet shape was analysed by direct minimization of the
free energy. It was found that the effect of curvature rigidity would need to be included in any
model in which large curvatures were obtained.

Future work will focus on attempting to reduce the numerical instabilities and also to
move to modelling the droplets in a flow field.
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Appendix. Theory of the isotropic–nematic interface

In this section we set out the target equations which describe the isotropic–nematic interface
which must be recovered by the LB scheme. In particular, we derive the expressions used in
the LB scheme for the elastic surface molecular field (12) and the surface stress tensor (13),
following closely the presentation of Rey [25, 29].

The nematic–isotropic interface is characterized by a unit normal, k, directed from the
nematic phase into the isotropic phase. Its mean Gaussian curvature is given by

H = − 1
2∂

S
αkα, (21)

where the surface gradient operator is defined by

∂S
α = I S

αβ∂β (22)

with

I S
αβ = δαβ − kαkβ. (23)

The divergence of I S
αβ gives the surface normal vector

∂S
α I S
αβ = 2H kβ. (24)

The total free energy, F , of the nematic is given in terms of the bulk free energy density, f N,
and the surface free energy density, f S, by

F =
∫

f N dV +
∫

f S dS (25)

where the f N was defined in equation (8) and the surface free energy density f S is given in
terms of the sum of isotropic and anchoring contributions:

f S = f Si + f Sa (26)

where

f Si = β00, (27)

β00 being the isotropic interfacial surface tension parameter, and

f Sa = β11kµQµνkν + β20 QµνQνµ + β21kµQµνQνκkκ + β22(kµQµνkν)
2 (28)
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where {βi j}, i j = 11, 20, 21, 22, are the anchoring coefficients.
The interfacial torque balance equation is

hSe
αβ + hSv

αβ − λSδαβ − εαβµλ
S
µ = 0. (29)

Here λS and λS
µ are the Lagrange multipliers determined by requirements that the order tensor

is traceless and symmetric. The surface elastic molecular field is

hSe
αβ = − ∂ f S

∂Qαβ

+ ∂S
µ

(
∂ f S

∂(∂S
µQαβ)

)
− kµ

(
∂ f B

∂Qαβ,µ

)
(30)

and hSv
αβ is the surface viscous molecular field. The interfacial stress balance equation is

kµ(σ
N
µα − σ I

µα) = ∂S
µσ

Se
µα + ∂S

µσ
Sv
µα. (31)

Here, σN
αβ is the total bulk stress tensor in the nematic phase

σN
αβ = −PNδαβ + σ d

αβ + σ f
αβ + σ v

αβ (32)

and σ I
αβ = −P Iδαβ + σ Iv

αβ is the total bulk stress tensor in the isotropic phase, σ Iv
αβ being the

viscous stress tensor in the isotropic phase. σ Se is the total elastic surface stress tensor

σ Se
αβ = I S

αβ f S − I S
αµ

(
∂ f S

∂kµ
kβ

)
− I S

ακ

(
∂ f S

∂(∂S
κ Qµν)

)
∂S
β Qµν (33)

and σ Sv is the viscous surface stress tensor. The quantities hSv
αβ and σ Sv are not needed in this

work since we are only considering steady state systems.
The surface elastic molecular field (30) can be cast as the sum of anchoring and gradient

contributions:

hSe
αβ = hSea

αβ + hSeg
αβ (34)

where, after substitution from equations (10) and (28), we find

hSea
αβ = −β11kαkβ − 2β20 Qαβ − 2β21kµ(Qµβkα + Qµαkβ)− 2β22kαkβkµkνQµν (35)

and

hSeg
αβ = −L1kµ∂µQαβ − L2kα∂µQµβ . (36)

The elastic surface stress tensor (33) is given by the sum of the normal σ Sne and bending
σ Sbe stresses:

σ Se
αβ = σ Sne

αβ + σ Sbe
αβ (37)

where with the help of (26)–(28), the normal elastic surface stress tensor is given by

σ Sne
αβ = I S

αβ [β00 + β11kµQµνkν + β20 QµνQµν + β21kµQµνQνκkκ + β22(kµQµνQνκkκ)
2] (38)

and the bending elastic surface stress tensor is given by

σ Sbe
αβ = −2β11 I S

αµQµνkνkβ − 2β21 I S
αµQµνQνκkκkβ − 4β22(Qµνkµkν)I

S
αµQµνkνkβ. (39)

The net elastic surface force GSe
α is given by the surface gradient of the elastic surface stress

tensor:

GSe
α = ∂S

µσ
S
µα. (40)

The normal stress σ Sne and the bending stress σ Sbe contribute to the net surface force. The
normal stress σ Sne generates tangential Marangoni force caused by surface gradients of the
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tensor order parameter and independent of curvature, and the usual normal force existing due
to the presence of curvature:

GSne
α = ∂S

α f S − K f Skα. (41)

The bending stress σ Sb generates both normal and tangential components of the force existing
due to anisotropic surface tension of nematics:

GSbe
α = kα(K kµ − ∂S

µ)
∂ f S

∂kµ
−

(
∂ f S

∂kµ
∂S
µ

)
kα. (42)

If we retain only terms up to the first order in Q in the surface free energy density (28),
we obtain the expression

f S = β00 + β11kµQµνkν, (43)

that can be shown to give the expression for surface free energy proposed by Rapini [32].
The elastic surface molecular field and the elastic surface stress tensor corresponding to this
expression for the surface free energy density are given by

hSe
αβ = −β11kαkβ − L1kµ∂µQαβ − L2kα∂µQµβ (44)

and

σ Se
αβ = β00(δαβ − kαkβ) + β11[δαβQµνkµkν + Qµνkµkνkαkβ − 2Qαµkµkβ]. (45)

These last two expressions are equations (12) and (13) of section 3.
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